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Challenges and solutions for performing 3D time-domain elastic 
full-waveform inversion

Abstract
The full-waveform inversion (FWI) method relies on an ef-

fective numerical solution of the wave equation. The wave equation 
must be solved numerous times during an inversion run. In the 
past, to be able to use FWI in practice, it was necessary to assume 
that the earth’s subsurface was a 2D acoustic medium. Recent 
increases in computational power have made it possible to include 
more real-world physics in the FWI method, such that the com-
putational subsurface can mimic the real-world subsurface as 
closely as possible. Going from 2D to 3D is challenging, primarily 
due to the numerical methods involved in solving the wave equa-
tion. Including elastic effects is not straightforward due to the 
increase in possible models that can explain the data, more com-
plicated wave phenomena involved in the wave propagation, as 
well as trade-off between the subsurface elastic parameters during 
the inversion. We discuss some of the challenges and solution 
strategies for using the FWI method in the time domain using a 
3D elastic computational domain.

Introduction
Seismic waves that have propagated through the earth and 

are recorded at the earth’s surface contain information about the 
physical properties of the subsurface. The physical properties of 
the subsurface affect the traveltime as well as the amplitude of 
the seismic signal and are of great interest for a proper characteriza-
tion of the subsurface. One of the goals of exploration geophysics 
is to use the seismic signal to obtain a better understanding of the 
subsurface that can improve the success rate in the search for 
hydrocarbons. Among other seismic imaging methods, the full-
waveform inversion (FWI) method has proved in recent decades 
to be an effective tool for finding high-resolution models of the 
physical properties of the subsurface.

In the first investigations of the earth’s interior, a few seis-
mograms from different earthquakes around the globe were used 
(Oldham, 1906). Since then, much effort has been put into de-
veloping systems for acquiring better seismological data. Nowa-
days, accurate sensors such as hydrophones and geophones are 
placed around the globe to continuously monitor waves related to 
earthquakes and other natural disasters. In exploration geophysics, 
on the other hand, the development has been driven toward ac-
quisition systems that can collect seismic data using active sources 
in the water layer, at the sea bottom, on land, and inside well 
bores. Today, it is possible to acquire dense, multicomponent 
seismic data with better quality than ever before. To account for 
the full potential of high-quality seismic data, it is important to 
use advanced methods like FWI that incorporate as much real-
world physics as possible.

The first methods for estimating subsurface parameters were 
based on using traveltime information of the waves recorded at 
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the earth’s surface (Oldham, 1906). Claerbout (1971) introduced 
migration of seismic data based on the wave equation, which 
subsequently has developed into present-day advanced imaging 
methods such as reverse time migration (RTM). Common for 
modern methods is the requirement for a kinematically correct 
velocity model of the subsurface that is used to propagate the 
seismic signal recorded at the surface back to the origin of the 
event (typically an interface) in the subsurface.

Tarantola (1984) and Mora (1987) introduced the concept of 
FWI. The FWI method gives estimates of the physical properties 
for the medium the waves have traveled through and is formulated 
as an inverse problem in which one tries to estimate the subsurface 
parameters directly by minimizing the difference between recorded 
and synthetic seismic data. This is done in a nonlinear optimization 
procedure. The key requirement for the method is the numerical 
solution of the wave equation, which is used both in generating 
the synthetic data and in forming the model gradient used to 
update the physical property model in the optimization method.

Imaging methods are commonly divided into two main cat-
egories. The first category consists of migration methods like 
RTM that utilize the high-frequency features of the subsurface, 
and thus a detailed image of the subsurface is the output from 
these methods. The second category, normally called seismic inver-
sion, consists of methods that estimate the physical properties of 
the subsurface through an inversion process. FWI belongs to the 
second category. As the migration methods require a velocity 
model, common practice is to use a two-step approach in a con-
ventional imaging workflow: A velocity model is created using a 
combination of seismic tomography and FWI. This inverted veloc-
ity model is then used as input in the migration method. By using 
this approach, the advantages from both categories are combined 
to improve understanding of the subsurface.

Because FWI requires numerical solutions of the wave equation, 
it is computer intensive. As a consequence, the development and 
applications of the method have somewhat followed the develop-
ment of computer technology. The first applications of FWI, 
therefore, were restricted to the assumption that the subsurface is 
a 2D acoustic medium (Pratt, 1999). This assumption reduces the 
computational cost dramatically, as the 2D acoustic wave equation 
requires at least an order of magnitude less computer resources to 
solve than the 3D elastic counterpart. The restriction to 2D acoustic 
wave propagation is an oversimplification, and hence a large effort 
has been invested to extend FWI to a real 3D world.

Full-waveform inversion can be performed in the time domain 
or in the frequency domain. In 3D, the most common implementa-
tion for FWI is the time domain due to the scaling of the com-
putational burden for the numerical methods. The time-domain 
implementation has proven worthy of tackling a large range of 
applications in both controlled-source exploration geophysics and 
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earthquake seismology. In the frequency domain, the wave equa-
tion is reduced to a boundary value problem that is formulated as 
a system of linear equations. This system is solved using iterative 
methods or direct Gaussian elimination techniques. For the 3D 
problem, the linear algebra techniques have been considered 
intractable due to the memory demands in solving the linear 
problem (Operto et al., 2015). Because of this fact, we have imple-
mented our elastic FWI method in the time domain.

In this paper, we discuss the importance of fully accounting 
for real-world physics in FWI. We mention some of the challenges 
and solution strategies in performing 3D elastic FWI in the time 
domain. In the end, we show examples of applications using 3D 
elastic time-domain FWI on synthetic and real data.

Why 3D elastic FWI?
The real world is 3D in its property variations, and the recorded 

wavefield is a result of 3D wave propagation. One important 
difference between 2D and 3D wave propagation is the geometrical 
spreading factor that controls the amplitude of the signal. In a 
2D setting, the amplitude of the wavefield (from a point source 
in a homogeneous medium) decay is 1 / r where r is the distance 
the wave has traveled. In 3D, on the other hand, the decay is 1/r. 
Moreover, there is a phase difference between 2D and 3D wave 
propagation. In some cases, the phase differences may be large. 
Thus, when the 2D wave equation is used in FWI, the amplitudes 
of the synthetic data do not match those of the real data, and 
there is a challenge in getting the phase information correct. The 
consequence is that real data must be modified prior to the inver-
sion. This modification has proved to be problematic and may 
give artifacts in the inverted subsurface models (Auer et al., 2013).

The acoustic assumption is problematic, in general, simply 
because the real world is not an acoustic medium. A better ap-
proximation is to assume that the subsurface is an elastic medium. 
Wave phenomena like shear waves and converted waves are not 
included in the acoustic assumption as the medium is assumed 
to be a fluid (i.e., no shear forces are allowed in the medium). 
However, the acoustic wave equation models the kinematics of 
the pressure waves in an approximately correct fashion. This fact 
is taken to be one of the main reasons FWI has been applied with 
success using the acoustic assumption. On the other hand, the 
wavefield dynamics are not modeled correctly such that the reflec-
tion and transmission coefficients are incorrectly estimated. For 
the synthetic data, this may have a large impact on the amplitudes, 
with the result being that the synthetic-data amplitudes are not 
correctly estimated compared to the real-data amplitudes.

To illustrate the difference between acoustic and elastic FWI, 
we have constructed a synthetic elastic 3D model consisting of 
several layers in depth, each with different physical properties. 
We simulate a streamer survey with a cable length of 1700 m and 
use the elastic wave equation to create the synthetic data. Since 
this is short-offset data, we use FWI to invert for the P-wave veloc-
ity (VP) and link the other parameters using simple empirical re-
lationships. In Figure 1, we show vertical profiles of the density 
(ρ) and VP for acoustic and elastic FWI. We observe that down 
to approximately 400 m depth the acoustic FWI fails completely 
in approximating both the density and VP model. This is a direct 
consequence of the incorrect reflection and transmission coeffi-
cients in the acoustic assumption. The elastic FWI, on the other 
hand, does not have the same challenges in approximating the 

parameters in the same interval. At interfaces, there are oscillations 
in both the acoustic and elastic FWI results. This is a consequence 
of the low frequencies used in the inversion. In addition, the layer 
interfaces are slightly shifted downward for the acoustic FWI 
compared to the elastic FWI. This example shows that it is im-
portant to include elastic effects in FWI, particularly when we 
use short-offset data.

The benefit of performing 3D elastic FWI is that the synthetic 
data is approximated more correctly since the decay of the am-
plitudes and the phase are correct. Thus, no data modification is 
needed prior to inversion. Moreover, out-of-plane events become 
part of the synthetic data, which may improve the imaging results. 
In the end, as more real-world physics is included in the method, 
accurately estimated subsurface elastic models may yield better 
images and thus increase understanding of the subsurface. The 
understanding also may be improved simply because the physical 
models and thus the seismic images are 3D.

Challenges in performing 3D elastic FWI
The challenges in going from the 2D acoustic to the 3D 

elastic computational setting can be divided, in general terms, 
into two categories: (1) computational challenges and (2) theo-
retical challenges.

In the center of every FWI algorithm lies the numerical solu-
tion of the wave equation. The numerical solution is used both to 
create the synthetic data and in the computation of the model 
gradient. A seismic wave propagating in an elastic medium is 
governed by the following partial differential equation (Aki and 
Richards, 2002)

  	 ρ(x)∂t
2ui (x,t ) = ∂ jσ ij (x,t )+ f i (x,t ),                   (1)

and

 σ ij (x,t ) =c ijkl (x)εkl (x,t ) ,                             (2)

where ρ(x) is the density, ui(x,t) is the particle displacement in 
direction i, σij(x,t) is the stress tensor, fi(x,t) is a body force, cijkl(x,t) 
is the elasticity tensor, and εkl(x,t) is the strain tensor given as

ε kl (x,t ) =
1
2

∂uk(x,t )
∂xl

+ ∂ul (x,t )
∂xk

⎛
⎝⎜

⎞
⎠⎟

.                  (3)

Figure 1. Vertical profiles of the models in the synthetic test for the difference 
between acoustic FWI (AFWI) and elastic FWI (EFWI). (a) The density (ρ) and (b) the 
P-wave velocity (VP) (modified from Raknes et al., 2015).
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In the above equations, the Einstein’s summation convention is 
used and i, j ,k,l ∈{x, y,z} .

The above equation can be solved by a wide range of different 
numerical methods (Igel, 2016). In the following we use the finite-
difference approach. From a computational point of view, the most 
expensive part of solving the wave equation is the computation of 
the derivatives in both space and time. This is done by discretizing 
the equation and computing the derivatives using a finite number 
(typically below 20) of local points. The wave equation is hyperbolic 
by nature (Evans, 2010), and thus the wave equation is normally 
solved by an explicit method that requires small time steps to be 
numerically stable. If we let n be the number of points on each 
spatial axis and nt be the number of time steps, the computational 
cost for solving the equation scales as O(n3·nt ) . In 3D, the discrete 
model often consists of several millions of points — a number 
which is large compared to a standard 2D discrete model. More-
over, the number of derivatives to compute is larger in 3D than 
in 2D simply because we have one more dimension to consider. 
Hence, solving the 3D elastic wave equation for a realistic-sized 
problem is a computationally demanding procedure.

To solve equations 1 and 2 efficiently, it is important to keep 
all variables and physical parameters in memory on the computer 
as there is a large bottleneck for file input and output operations. 
In the past, there was a limitation on the size of the problems 
possible to solve due to limited memory. On today’s modern 
computer systems, there are still memory limitations, but in 
practice they are nonexistent as the time spent to solve the wave 
equation is impractically large if the whole memory is used for 
one single simulation.

The amount of data in a conventional seismic survey is large 
— typically several terabytes. The number of shots is typically 
several hundred thousands. In FWI, a synthetic data set and a 
model gradient for each shot must be computed in every iteration 
of the optimization method. Hence, to be able to perform a 
successful inversion run, the method must be parallelized for use 
on large high-performance computing (HPC) facilities. Further-
more, FWI requires a large amount of temporal data storage 
during the computations. Consequently, FWI puts large require-
ments on the computational system to be used.

From a theoretical point of view, the inverse problem is ill-
posed (in the Hadamard sense [Evans, 2010]) and nonlinear, 
demanding the use of complicated solution techniques to solve 
the problem. In addition, including elastic parameters in FWI is 
challenging because the solution space increases compared to a 
similar acoustic inverse problem, since more parameters are in-
cluded in the model space. Hence, more parameter models can 
explain the data, which means the number of solutions to the 
inverse problem is larger in the elastic case.

A major challenge with including elastic parameters is that 
there is a coupling effect (so-called trade-off) between the elastic 
parameters affecting wave propagation and, thus, the seismic 
signal recorded at the receiver positions. Consequently, the inver-
sion results may be degraded if these effects are not taken into 
account in the elastic FWI (Wang et al., 2016).

The standard solution method for the optimization problem 
is to use a local gradient-based optimization method. The major 
challenge with these methods is the convergence into so-called 

local minima that potentially can be far away from the global 
minimum sought for. To use such methods requires that the initial 
model is close to the solution.

Solution strategies
The increase in available computer power in recent years means 

we can solve bigger and more complex problems than ever before. 
However, the computational burden for performing 3D elastic 
FWI is so high that we still are not able to solve problems as large 
as we desire within a reasonable time. One way to circumvent the 
compute time is to use graphic cards to perform the computations 
(Venstad, 2016). With this strategy, it has been shown that the 
compute time can be reduced by a factor close to 30 (Weiss and 
Shragge, 2013).

Another way to efficiently solve the wave equation is to de-
compose the computational domain into smaller parts and dis-
tribute the different parts between each CPU on the HPC. Each 
CPU computes the wave equation in its respective part of the 
domain. This approach requires a large amount of communication 
between the compute nodes, as the wavefields at the boundaries 
of each part must be sent back and forth between the nodes.

One solution to reduce the storage needs necessary to perform 
the inversion is to use wavefield reconstruction methods (Nguyen 
and McMechan, 2015; Raknes and Weibull, 2016a; Yang et al., 
2016). By using the Kirchhoff integral, the wavefields inside the 
computational domain can be reconstructed in the computation 
of the model gradient by using the wavefields recorded on the 
domain boundaries. For normal-sized seismic surveys, this will 
reduce the required storage needs from several terabytes down to 
tens of gigabytes. The extra cost to do this is the requirement of 
an extra numerical solution of the wave equation. In Figure 2, we 
show an example of a snapshot of the true and reconstructed 
wavefield using a synthetic anisotropic model. We observe that 
artifacts are part of the reconstructed wavefields. The amplitudes 
of the artifacts are smaller than the real events. For a single model-
ing, the artifacts may be problematic, especially for long simulation 
times. When used in FWI, the artifacts are less problematic since 
the number of shots covering an area normally is large; thus the 
artifacts are reduced (stacked out) compared to real events in the 
computation of the updated FWI parameter model.

It is also important to reduce the number of shots used in the 
inversion to minimize the total computational time. The full data 
set therefore is decimated such that only a small portion of the 
shots in the area is used in FWI. The distance between each shot 
is dependent on the desired resolution and the frequencies used 
in the data (to avoid aliasing). To reduce the computational burden 
even more, the shots in the decimated data set are divided into 
different groups, which is a technique called shot subsampling. 
The shots from each group are used in different iterations of the 
optimization method.

There are two main strategies to avoid convergence into local 
minima. The first is to use optimization methods other than the 
local gradient-based methods. There is a large class of such methods 
ranging from methods that search the whole solution space (i.e., 
Monte Carlo methods) to pseudoglobal methods like the simulated 
annealing method. All these methods still are challenging to use 
as the number of simulations required is relatively large compared 
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to the local methods. Furthermore, 
constraints must be included in these 
methods to ensure that the solution 
found represents the physical properties 
of the underground correctly.

The second strategy is to improve 
the starting model using methods other 
than FWI. Examples of such methods 
are first-arrival traveltime tomography 
(Leung and Qian, 2006), reflection-
based tomography (Prieux et al., 2013), 
or wave equation migration velocity 
analysis (Raknes and Weibull, 2016b). 
It is worth mentioning that this ap-
proach is not directly solving the chal-
lenge with convergence into a local 
minimum. It only makes a model that 
(hopefully) is closer to the solution 
sought for, and hence there are better 
changes for convergence towards to 
this solution.

The trade-offs between the different 
elastic parameters is dependent on the 
source and receiver geometry. One ap-
proach to reduce the trade-off is by data 
filtering, using different data components 
or applying different problem parametri-
zations (Köhn et al., 2012). Another 
approach is to use the Hessian matrix 
in the optimization method. The Hes-
sian matrix holds information about the 
curvature of the misfit functional with 
respect to the model parameters. In 
addition, it is considered as an operator 
that accounts for the limited illumina-
tion at greater depth. Furthermore, the 
inverse Hessian is expected to correct 
the model gradients from the trade-offs 
between the elastic parameters (Wang 
et al., 2016). The major challenge in 
elastic FWI is that the Hessian and its 
inverse are more expensive to compute 
than the gradients, as second-order de-
rivatives of the misfit functional with 
respect to the model parameters are 
needed. With the increase in computer 
power, we currently see an increasing 
interest in including the Hessian in the 
FWI method (Wang et al., 2016).

Examples
The first example we show is taken from the Sleipner area, 

offshore Norway. The real data set used is a conventional short-
offset streamer data set. Therefore, the inversion is restricted to 
the VP model, whereas the other parameter models are computed 
using simple empirical relationships, as in the synthetic example 
above. An informative view of the quality of the FWI model is 

made by an overlay plot of the seismic image and the corresponding 
velocity model. In Figure 3, we have included the seismic images 
and the corresponding overlay plots for the shallow part in the 
Sleipner area. The repeated vertical lines in the plots are imprints 
of the acquisition lines. The initial tomography model is smooth 
without large velocity changes. The corresponding seismic image 
(Figure 3a) is noisy, and details like the channel are not well 

Figure 2. (a) The true wavefield and (b) the reconstructed wavefield using wavefield recordings back-propagated 
from the domain boundaries using the Kirchhoff integral. In this example, the wavefields are recorded and back-
propagated at the position of the dashed line (from Raknes and Weibull, 2016a).

Figure 3. Seismic images and overlay plots of the seismic image and the corresponding VP model for the shallow 
part in the Sleipner area. (a) The initial seismic image created using the tomography model, (b) the seismic image 
created using the FWI model, (c) overlay plot using the initial model, and (d) overlay plot using the FWI model 
(modified from Raknes et al., 2015).
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focused. FWI introduces large changes 
to the seismic image (Figure 3b) and 
the velocity model (Figure 3d). The 
most pronounced change between the 
seismic images is the focusing of the 
channel. In the FWI velocity model, 
the channel is estimated as a low-ve-
locity zone. In general, there is a good 
correlation between the FWI model 
and the seismic image, which is not 
the case for the initial model and the 
seismic image.

In Figure 4, vertical slices through 
the migrated cubes are shown using the 
parameter model before and after FWI. 
In general we observe that the image 
after FWI is more focused with more 
continuous reflectors than the image 
before FWI. The improvements are most 
pronounced in the upper part of the 
cube, which is due to the short offsets 
in the data set resulting in lower resolu-
tion at greater depths in the model.

The second example illustrates the 
wavefield reconstruction technique and 
its influence on the FWI results. To 
create this example, we have used a 
submodel of the SEG/EAGE Over-
thrust model. We have created a syn-
thetic multicomponent ocean-bottom 
data set that we use in the inversion 
for VP and VS. In Figure 5, vertical slices 
through the 3D cubes of VP and VS 
models are shown. We observe that 
there are small differences between the 
inversion results with and without the 
wavefield reconstruction method. Elas-
tic FWI is able to resolve the shallow 
part of the VP and VS models. The deeper 
parts in the models are partly updated, 
but the details are not well resolved. 
This is a result of the limited frequency 
content used in the inversion, poor il-
lumination at these depths, as well as 
the relatively few iterations performed 
to estimate the models.

The two examples show that it is possible to run elastic FWI 
in 3D within reasonable time and cost and with improvements 
in both the parameter models as well as the seismic images. Thus, 
the extra effort invested in performing elastic FWI may improve 
the understanding of the subsurface.

Conclusion
We have discussed why it is important to use FWI in a full 

3D elastic computational setting to account for as much real-world 
physics as possible. Solving the 3D elastic FWI problem is chal-
lenging both from a computational and a theoretical point of view. 

We have shown both real and synthetic examples that demonstrate 
the potential in using 3D elastic FWI in subsurface parameter 
estimation. Using an acoustic approach may result in wrongly 
estimated parameters due to the difference in the reflection and 
transmission coefficients. 

Corresponding author: espen.raknes@ntnu.no
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